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I model people in a coordination game who use a communication network to tell each other
their willingness to participate. The minimal sufficient networks for coordination can be inter-
preted as placing people into a hierarchy of social roles or “stages”: “initial adopters”, then “fol-
lowers”, and so on down to “late adopters”. A communication network helps coordination in
exactly two ways: by informing each stage about earlier stages, and by creating common know-
ledge within each stage. We then consider two examples: first we show that “low dimensional”
networks can be better for coordination even though they have far fewer links than “high dimen-
sional” networks; second we show that wide dispersion of “insurgents”, people predisposed toward
participation, can be good for coordination but too much dispersion can be bad.

1. INTRODUCTION

Although collective action depends on both social structure and individual incentives,
these integral aspects have been formalized separately, in the fields of social network
theory and game theory. By considering them together, this paper engages the classic
question of which structures are conducive to coordination and shows that structure and
strategy are related in a mutually interesting way.

Here we consider a coordination game in which each person wants to participate
only if others participate. Social structure is thought of as a communication network by
which people tell each other their willingness to participate. Each person knows whether
her neighbours in the network are willing, but does not know about anyone else. OQur
model is thus a game of incomplete information in which each person, given his local
knowledge, decides whether to participate.

The main result is a characterization of the minimal sufficient networks for coordi-
nation in terms of a hierarchy of social roles or ‘“stages”: “initial adopters”, then
“followers”, and so on down to “late adopters”, for example. A communication network
helps coordination in exactly two ways: by informing each stage about earlier stages, and
by creating common knowledge within each stage. We also consider two simple examples:
first, we show that low dimension or “strong link™ networks can be better for coordination
even though they have far fewer links than high dimension or “weak link” networks;
second, we show that wide dispersion of “insurgents”, people predisposed toward partici-
pation, can be good for coordination but too much dispersion can be bad.

This paper is built on the assumption that the most basic and common mechanism
for coordination is the “T’ll go if you go” mechanism: individuals first communicate with
each other about their preferences, and then each individual chooses whether to partici-
pate or not. Hence a person’s participation depends on what he knows about his neigh-
bours; it does not depend solely on their participation itself, either through learning,
adaptation, or social influence. The physical analogies of contagion or diffusion are not
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really appropriate; the social network “carries” information, not influence or participation
itself.

Although the model of course applies to coordination problems generally, its main
motivation is collective political action, such as protest, revolt, or revolution. The import-
ance of social networks for political participation has been explored in many contexts (for
example Snow, Zurcher and Ekland-Olson (1980), and Opp and Gern (1993)) and is most
clearly demonstrated by the efforts governments take to restrict them: for example, in the
former East Germany “only about 13 percent of households had a telephone and there
were few restaurants or pubs” (Opp and Gern (1993), p. 662); plantation owners in Hawaii
around 1900 tried to discourage labour action by conscripting workers who spoke differ-
ent native languages (Takaki (1983)). A combined structural and strategic analysis of
collective action goes back at least to Marx, who saw the proletariat’s emergence as a
collective actor as resulting from machine production both concentrating workers in fac-
tories (structural) and reducing and levelling wages (strategic); interestingly, Marx
emphasized improved communication networks resulting from technologies such as the
railroad.

2. THE MODEL

Start with a finite set of people N={1,2,...,n}. Each person ie N chooses an action a;e
{r, s}, where r is “revolt”, the “risky” action, and s is “‘stay at home”, the “safe” action.
Each person / is either willing w or unwilling x. Person i has utility function
u;: {w, x} x A >R, where 4 = {r, s}". If person i is willing, then his willingness to revolt
increases the more other people revolt: if a,a’ed and daj=r=a,=r, then
wi(w, r, apvn) = wi(W, 8, anvy) 2u:(W, 1, ayngy ) — ui(w, 8, dangy ); in other words, his utility is
“supermodular”. We also assume that w,(w, r, ran ;) Zu:(w, 5, Fangs); in the best case in
which everyone else revolts, a willing person wants to revolt. If person  is unwilling, then
he always wants to stay at home: u,(x,a) =0 if ¢;=r and u;(x,a) =1 if a; = s.

The communication network is a binary relation — on N, where j—i means that
person j talks to person /. The network — itself is common knowledge, and we assume
i—i throughout. Each person can either be willing or unwilling; we assume that person i
knows about only his neighbours in the network, the people in his “ball” B(i) = {je
N: j—i}. The set of states of the world is ® = {w, x}". So when the actual state of the
world is 8€0O, person i knows only that the state of the world is in the set
Pi(68) = {(050), Onse): OmisnE {w, x}" 7}, Taken together the sets {P;(6)}oco form a
partition of ©, which we call .”;. A strategy for person i is a function f;: ® = {r, s} which
is measurable with respect to .7, that is, for all 8,0’ ®, if 8, 8’< P, where Pe.7,, then
Ji(8) =£(0"). The idea here is that if two states are in the same element of the partition
.#:, then person i cannot distinguish between them, and hence must take the same action
in either state.

Say that F; is the set of all strategies for person i, and let F= X ,.yF;. Given feF,
person i’s ex ante expected utility is EU,(f) = ¥,_o m(0)u;(8;, f(8)), where prior beliefs
are given by me A®. We say that fis an equilibrium if for all ie N, and for all g,c F;, we
have EU(f)2 EU(g:, fm(s); each person i is playing a best response given what everyone
else is doing.

We call this game I'(—, x). Because utilities are supermodular, it is possible to show
that an equilibrium always exists.

Lemma 1. An equilibrium of T(—, ) exists.
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3. MINIMAL SUFFICIENT NETWORKS

Which networks — enable the group to revolt? It depends on prior beliefs 7. For example,
if each person has a strong enough belief that everyone else is willing, then each person
will revolt even if everyone is completely isolated and does not actually know that anyone
else is willing. In other words, if everyone is already sufficiently optimistic, then revolt
will take place regardless of the communication network. In this paper we take a more
“pessimistic” or “conservative” view and say that a communication network is sufficient
if it enables the group to revolt regardless of the prior 7. For everyone to revolt, everyone
must be willing, and hence we need to look only at that state of the world.

Definition. We say that — is a sufficient network if for all we A®, there exists an
equilibrium f of I'(—, ) such that fi(w,...,w) =r for all ie N.

For a network to enable revolt regardless of the prior, it must do so in the “worst
case” in which any potential loss from revolting outweighs all possible gain: for example,
if prior beliefs place almost all weight on people being unwilling (making losses extremely
likely) or if a person receives an extremely large penalty if she revolts and not enough
people join in (making losses extremely large). In the worst case, in equilibrium a person
revolts only when there is absolutely no risk in doing so. In other words, f(8) = r if and
only if 6, = w and u;(w, r, fyr (i(®)) 2u:(w, 5, far(5(9)) for all g€ P,(6); a person revolts only
if she is willing and gains in all states of the world which she knows might happen. The
following lemma is helpful.

Lemma 2. Let F={feF. f(0)=r if and only if 6,=w and
u(w, r, fan (@) 2u:(w, 5, fan (@) for all ¢ P,(8)}. Then — is a sufficient network if and
only if there exists fe F such that f(w,...,w)=r for all ie N.

So one way of understanding our sufficient network definition is in terms of robust-
ness: a sufficient network must enable revolt regardless of the prior. Another way is in
terms of an implicit assumption that people revolt only when there is no risk in doing so.
Anyhow, our definition allows us to focus attention on the communication network and
leave the prior unspecified.

It is easy to show that more communication never hurts revolt. Say —c—’ if
i—j=i-jforall i, je N. If — is sufficient and —»c—’, then —'is also sufficient.

Lemma 3. [f ->c —’ and — is a sufficient network, then —’ is a sufficient network.

Do sufficient networks exist? If — is the “complete network™ (i—j for all i, je N),
everyone talks to everyone else, and when everyone is willing, that fact is common know-
ledge; hence everyone revolting is an equilibrium regardless of the prior, and the complete
network is sufficient. In general, however, the complete network is much more communi-
cation than is necessary. We say that — is a minimal sufficient network if it is sufficient
and does not contain any smaller sufficient network.

Definition. We say that — is a minimal sufficient network if (1) — is a sufficient net-
work and (2) if —»"is a sufficient network and -’c—, then -’ = —.
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Minimal sufficient networks are exactly what is required for revolt; anything less is
insufficient, and anything more is unnecessary. The main result of this paper is a charac-
terization of minimal sufficient networks. All minimal sufficient networks can be thought
of as a hierarchy of “cliques”. A clique of — is a set M,cN such that i—;j for all i, je
M, that 1s, a subgroup in which each person talks to everyone else.

Proposition. Say — is a minimal sufficient network. Then there exist cliques
M, M,, ..., M, which cover N and a binary relation — defined over M\, M,, ..., M, such
that (1) i—j if and only if there exists some M, which contains i and M, which contains j
such that My—M, and (2) if M, ,—>M,, then there exists a totally ordered set

i1 iy
M, M,,...,M; ,,M,, where M, is maximal.

The cliques M, M,, ..., M, cover N (that is, N= M, U - - -UM,): in general they do
not partition N, and so a person can belong to more than one clique. Fact (1) says there
exists a relation between these cliques, which we also designate by —, which completely
determines relations between individuals: whether I talk to you is determined completely
by whether I belong to a clique which “collectively” talks to a clique you belong to. Fact
(2) says that these cliques are arranged hierarchically in the sense that a relation between
any two cliques is part of a totally ordered set of cliques (M, M,,,..., M,, where
k<l= M, —>M,) in other words, each relation among cliques is part of a “chain’’ which
starts with a “leading clique”, then has cliques following in sequence, in which each clique
knows about earlier cliques.

Coincidentally, sociology’s “social network theory” has a standard interpretation of
this result (for a survey, see Wasserman and Faust (1994), chapter 10). Each clique is a
social role: relations between individuals can be described completely by relations between
social roles. Relations among roles are interpreted as a hierarchy among social roles. Thus
we call the cliques M, M,, ..., M.and — defined on these cliques a social role hierarchy.

For example, consider the “threshold game” I',, .., where person i wants to revolt
if at least e; people revolt (in other words, u;(w,a) =1 if a;=r and #{jeN:a,=r}2e,
u(w,a)=-1 if ¢;=r and #{jeN:a;=r}<e;, and u(w,a) =0 if a;=s). In the threshold
game 544, there is a unique minimal sufficient network, shown in Figure 1; the thresh-
old 2 people are the “leading adopters” and the threshold 4 people are the “followers”
(for clarity, arrowheads are not drawn when a link is bidirectional).

2 4
2 T4
2 4
[~]
2 4
FiGURE 1

Minimal sufficient network of T';,.4 and its corresponding social role hierarchy
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Two minimal sufficient networks of I's 5 5 3 and corresponding social role hierarchies

FIGURE 2

In the threshold game I';333, there are two minimal sufficient networks, shown in
Figure 2; in the first, there is a leading clique of three people and a single follower, and
in the second there are two overlapping leading cliques.
two leading cliques: the threshold I person and the four threshold 4 people. Note that the
threshold 9 people need to know about the threshold 1 person not because they rely on
his participation directly but because the threshold 3 people rely on him.

To see why cliques are important, consider again the game I's 533 and the “square”
network in Figure 4. Intuitively, say I am in this network and considering whether to
revolt; since I know that there are three people with threshold 3 who are willing (my
neighbours and myself), I know that there is sufficient discontent to make revolt possible.
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FIGURE 4
The square

But do I actually revolt? I know that my neighbour on the right, for example, is willing
and I know that he knows I am willing. But I do not know whether his other neighbour
(“across” from me) is willing, and hence I cannot count on him revolting. Since I cannot
count on him (or anyone else), I do not revolt. So even though everyone in the square
knows that revolt is possible, no one knows that anyone also knows, and hence no one
in fact revolts. In a three person clique, as shown in Figure 2, however, each individual
not only knows that his two neighbours are willing, but also that they know that each
other are willing.

The model shows how common knowledge comes up naturally in a network context
(see also Morris (1997)); a clique is the graphical representation of “local” common
knowledge. The importance of common knowledge for coordination has been demon-
strated in a variety of strategic contexts (for example Chwe (19994), Morris, Rob and
Shin (1995), Rubinstein (1989), Shin (1996)) and was first discussed by Lewis (1969).

Cliques must not only form; information must also “flow” starting from “leading
cliques” through chains of cliques. This is reminiscent of Schelling’s (1978) “chain reac-
tion” model, in which each person decides to participate after observing people already
participating. In our model, people know each others’ willingness, and do not observe
actions. Still, the models are similar in illustrating how coordination can occur through
unidirectional communication.

Minimal sufficient networks are a game’s “‘inherent structures”, interpretable as hier-
archical social roles. Communication helps in coordination in exactly two ways: by cre-
ating common knowledge inside each social role and by informing each social role about
its predecessors. Lewis’s common knowledge formation and Schelling’s unidirectional
communication were among the first coordination mechanisms to be explicitly described.
The proposition suggests that these two communication mechanisms are a “basis” for all
communication networks: a communication network is successful exactly to the extent
that it combines these two mechanisms in an appropriate way.

4. STRONG LINKS, WEAK LINKS, AND DIMENSION

In this example we consider the “dimension” of a large population playing a threshold
game. We show that low dimensions can be better for revolt than high dimensions, even
though in low dimensions each person knows far fewer people. This distinction between
low and high dimension is exactly sociology’s distinction between strong and weak links
(Granovetter (1973); for more examples see Chwe (19995)).

as e people in total revolt, and say the network — is symmetric. For person i to revolt, it
must be that he belongs to a minimal sufficient network. By the proposition, this minimal
sufficient network has a “leading clique” M, such that j—i for all je M,. Since — is
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Number of neighbours each person has in — for dimensions a=1,2,3

symmetric, person i belongs to the leading clique M. Since each person has a threshold
of e, it is easy to see that the leading clique must have at least e members. So our game-
theoretic model yields a simple graph-theoretic result: when everyone has threshold e and
the network is symmetric, revolt is possible if and only if one is in a clique of willing
people of size e.

Say that a large population of willing people live on a set H contained in R™. The
distance between two points x, ye R” is defined to be d(x, y) = max/L |x; — y.|; the set of
points within distance g of x is the “closed ball” b,(x) = {ye R": d(x, y) <q}. People are
distributed randomly and evenly on the set H: we assume that for all xe H, the expected
number of people who live in b,(x) is given by 4, where >0 is a constant and ¢ is
the dimension of H. For example, if H is a line, it has dimension o= 1; if H is a plane, it
has dimension o = 2.

Say that the communication network grows as time progresses. Say two people j and
k are connected at time ¢ if they are within distance ¢ of each other; that is, if person j
lives at x, person k lives at y, and d(x, y) <1, then we write j —'k. We start at time 7 = 1.
Figure 5 plots B¢“, the expected number of neighbours a person has, for dimensions ¢ =
1,2, 3. High dimension networks are denser in that each person has more neighbours.

We know that a person can revolt if and only if he is in a—’-clique of size e. But
given our distance function d, it is not hard to show that the cliques of —'are simply
those people who live in some b,,(x), a closed ball of radius /2. Each clique contains on
average B(t/2)* people; hence revolt is possible once (7/2)* is greater than e. Figure 6
plots B(z/2)%, the size of a clique at time ¢, for dimensions o= 1, 2, 3.

For low thresholds e, the low dimension networks form cliques of size e faster and
hence are better for revolt; for high thresholds, higher dimensions are better. But notice

Clique
size

FIGURE 6

Size of cliques of —'for dimensions a=1,2,3
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Me You

FIGURE 7
When o= 1, at least half of your friends are friends of mine; when o = 2, at least one fourth of them are

that when 7 <2, low dimension networks have larger cliques even though each person has
fewer neighbours. How is this possible? Figure 7 shows how: say that you are my neigh-
bour. In a line, at least half of your neighbours are also neighbours of mine; in a plane,
possibly only one fourth of your neighbours are my neighbours; in dimension 3, this
fraction goes down to 1/8, and so on. The more often that neighbours of my neighbours
are also my neighbours, the “greater the transitivity” of the network, the easier it is for
cliques to form. Low dimension networks have greater transitivity, but high dimension
networks have many more links. To form small cliques, transitivity, “involutedness”,
dominates and so lower dimensions are better. To form large cliques, the greater “connec-
tivity” of higher dimensions is the overwhelming factor.

From actual network data, Rapoport and Horvath (1961) plot a graph like Figure
5, called a “tracing” in social network theory. They start with an arbitrary person, find
two of her close friends, then find two close friends of each of these two people, and so
forth. With each iteration, the group increases slowly because often no one new is added:
the close friends of my close friends tend to be my close friends alsc. When instead they
successively add two acquaintances, the group grows quickly: acquaintances of my
acquaintances tend not to be my acquaintances. Thus Granovetter (1973) called links
which tend to be transitive “strong” links and links which tend to scatter widely “weak”
links. In our terminology, strong links have low dimension and weak links have high
dimension. Strong links traverse a society slowly, while weak links are “fast”: a demon-
stration suggests that any two people in the United States can be connected by as few as
six weak links (Milgram (1992)). To connect a large society, then, weak links are more
important than strong links; weak links are also better for the diffusion of information
(Granovetter (1995); see also Montgomery (1991) and Finnernan and Kelly (1997)).

For collective political action, however, the importance of strong versus weak links
is unclear. For example, data from volunteers in the 1964 Mississippi Freedom Summer,
in which college students went into the southern states of the U.S. to protest against
racial segregation, show that the presence of a strong link to another potential participant
correlates strongly and positively with participation while the presence of a weak link has
no correlation (McAdam (1986), McAdam and Paulsen (1993)). McAdam (1986, p. 80)
interprets this as the links having different functions: “although weak links may be more
effective as diffusion channels, strong ties embody greater potential for influencing
behavior”. This is of course reasonable, but our model suggests it is not necessary. If you
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and I are potential participants connected by a strong link, your friends are likely to be
my friends, and participation among our group of friends would be common knowledge
among us. If you and I are connected by a weak link, your friends and my friends do not
know each other. Strong links are better for forming common knowledge at a local level,
and when thresholds are low, local mobilization is sufficient (see also Marwell and Oliver
(1993)). In other words, the argument that weak links, in our example high dimensions,
are always better for communication relies on the implicit assumption that a person does
not care about what her friends know about each other.

5. EFFICIENT SEEDING AND OPTIMAL DISPERSION

Say we have a group of “conservatives” with threshold ¢ who do not revolt. However,
we can “‘seed” revolt by adding a small number of “insurgents”, people with threshold 1.
How can we trigger revolt among the conservatives with the fewest number of insurgents?

For simplicity, say that our set of people N is the integers and two people are connec-
ted if they are within distance & of each other (i—j if |i —j| £6). Note that everyone is in
a clique of size § + 1. Since we assume that the conservatives do not revolt unassisted, we
assume that e> 6 + 1. Note also that each person is connected to 26 + 1 people in total;
hence if e> 26 + 1, a conservative would not revolt even if everyone else was an insurgent.
Hence we assume e <26 + 1.

One minimal sufficient network is a clique of conservatives of size e, which does not
form by assumption. All other minimal sufficient networks involve a clique of conserva-
tives which is led by some insurgents. For example, one minimal sufficient network has a
clique of e —1 conservatives which is led by one insurgent, another has a clique of ¢ —2
conservatives led by two insurgents, and so on.

Say {i,i+1,...,i+[} is a clique of /+ 1 conservatives; hence /<48. Say that we try to
get these conservatives to revolt by giving them some insurgents to depend on. The set of
people who are connected to every member of the clique, but are not actually in the clique,
is the “fringe” {i+/-6,...,i—1}u{i+I+1,...,i+8}. Since the clique is of size [+ 1,
we need to add e —/—1 insurgents to the fringe. The fringe itself contains 2(6 —/) people.
So as long as e — [~ 1=2(8 — /), we can make the clique revolt by adding insurgents to the
fringe. But notice that the larger / is, the fewer insurgents are necessary; to minimize the
number of insurgents we need to add, we maximize / such that e —/—1=2(6 —/) and get
[=28+1~e. Hence the way to mobilize conservatives with the fewest number of insur-
gents is to take a clique of 26 +2 —e conservatives and surround them with e—§8 —1
insurgents on each side (by our assumptions, both of these numbers are at least 1). To
mobilize more cliques of conservatives, one can simply repeat this pattern. Figure 8 shows
some examples for =3 and ¢=35,6,7. When e=15, a clique of three conservatives
depends on the two adjacent insurgents; when e = 6, a clique of two conservatives depends
on the surrounding four insurgents; when e =7, a single conservative depends on six
surrounding insurgents.

Note that when e = 6 we have one insurgent for each conservative. If we keep this
ratio but simply alter the spacing, what happens? As shown in Figure 9, if we alternate
conservatives and insurgents, no conservatives revolt: the largest clique of conservatives
has two people, and only three insurgents are connected to both of them. If we place
insurgents and conservatives in groups of three, then again no conservatives revolt: the
largest clique of conservatives has three people, and only two insurgents are connected to



10 REVIEW OF ECONOMIC STUDIES
5 1 5 5 5 1 5 656 5 1 5 5 5 {1 5 5§

FiGurE 8
Efficient seeding

Do Conservatives
revolt?

SRS SRS TITI I NO

SSESISTSTSTSTSTSTSTSTSTSTSTSESE. s

NO

NO

FIGURE 9

Optimal dispersion of insurgents

all of them. If we place insurgents and conservatives in groups of four, then no conserva-
tives revolt because the largest clique of conservatives has four people, and no insurgents
are connected to all of them.

Insurgents should be optimally dispersed: if they are dispersed too finely, they are
“atomized”; if they are not dispersed enough, they are “ghettoized”. This example nat-
urally applies to ““vanguard” party organization (Lenin (1969)) but also to marketing
(Tacobucci and Hopkins (1992)): if people are more likely to use a new software pro-
gramme if their friends use it, discount coupons, which lower thresholds, should neither
be widely individually scattered nor concentrated all in one region, but should have many
local concentrations.
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6. DISCUSSION

Two of the model’s assumptions are unimportant in the sense that relaxing them would
not change much (of course, they might be crucial in a more general model). First, our
assumption that communication is not strategic is not an issue because an unwilling per-
son has no reason to say that he is willing, and a willing person would never say that he
is unwilling. Second, it would be more reasonable to assume that each person only knows
the network among his neighbours, as opposed to knowing the entire network. But since
in effect you believe that people who are not your neighbours are almost certainly unwill-
ing, it does not matter whether you know how they are connected.

The assumption that the network must enable coordination regardless of the prior is
a strong one. If the prior were specified or bounded, then for example instead of requiring
cliques, in which each person is connected to every other, one would require p-cliques, in
which each person is connected to at least a proportion p of the others. The question of
how much information is necessary for coordination has been pursued in more general
contexts (for example Morris, Rob and Shin (1995), Kajii and Morris (1997)), with results
in which conditions on prior beliefs play a crucial role. At least in the more limited context
pursued here, with priors left unspecified and with information having the specific
structure generated by a network, exact characterizations are obtainable.

Relaxing other assumptions might lead to some interesting new questions. First of
all, in our model! there is no disagreement over what to coordinate on: socialism versus
social democracy, or VHS versus Beta, for example. If there were competing coordi-
nations, the social network would influence what eventually gets chosen. Secondly, here
either two people are linked or they are not. More generally, I might randomly talk with
some people more often than others in a stochastic “contact process”. Communication
links might also be “noisy”, from misunderstandings or imperfections in technology
(Chwe (1995)). Our model also does not allow aggregate information: there is no way for
someone to know that three others are willing without also knowing who these people
are. Thirdly, we assume that the network is unchanging, but of course people intentionally
make new acquaintances and even maintaining the existing network can be costly (Boor-
man (1975), Hendricks, Piccione and Tan (1995), Kelly (1997)). To say what a person
gains by changing the network, however, one should be able to say what happens in the
static cases of before and after (for example Aumann and Myerson (1985), Jackson and
Wolinsky (1995), Watts (1997)). In the political context, a strategic model of network
formation would include activists building organizations and creating links and govern-
ments repressing communication, destroying and restricting links. Finally, people perhaps
should be able to communicate not only their willingness, but also the very fact of partici-
pation; if I see a very conservative person, or two socially distant people revolt, that would
be strong evidence that many people are revolting.

Recently, social structure has come up in the context of “local interaction games”,
in which each person’s payoff depends on the actions of his neighbours (for example
Akerlof (1997), Anderlini and Ianni (1996), Blume (1995), Ellison (1993), Goyal (1996),
Mailath, Samuelson and Shaked (1997), Morris (1999), Temzelides (1997), Young (1998)).
Our model is a “local information game”: locality is represented by information and not
necessarily by payoffs (see also Bala and Goyal (1998)); of course since our coordination
game is general, payoffs can be local also. Local interaction games make sense for local
coordinations, such as keeping our street clean; for “big” coordinations such as political
change, informational locality is more appropriate. Also, in a local interaction game, a
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person’s actions depend only on the actions of his neighbours and not how those neigh-
bours are connected. Under local interaction, for example, cliques do not have the same
crucial role, optimal seeding would be as dispersed as possible, and the “slow neighbour
growth” of low dimensions is in general better (Morris (1999)). The extent to which infor-
mational locality or payoff locality (or both) are important in a given situation is an
empirical issue; a crude screening test for informational locality would be to see if partici-
pation is correlated not just with neighbour participation, but also with the presence of
links between neighbours. For example, when Opp and Gern (1993) surveyed participants
in the demonstrations which led to the collapse of East Germany, they simply asked each
person whether he had friends who participated, and found that this was a significant
variable in predicting his participation. Our model suggests that each person should also
be asked if his friends who participated knew each other.

Theories of social structure, in sociology (for example Gould (1993), Macy (1991))
as well as economics, almost always make adaptive, bounded rationality, or behavioural
assumptions. There seems little reason for this in principle; the technical complexities,
however, of modelling complete rationality in a structural context might be a reason in
practice. This paper shows that these complexities can be made manageable, resulting in
some structural observations not otherwise discernible.

In game theory generally, social structure has come up in several contexts; for
example, some models of bargaining (Myerson 1977) and coalition formation (Aumann
and Myerson (1985), Kirman, Oddou and Weber (1986)) model social structure with a
network or graph. In models of trade, local interactions were considered early on (for
example Follmer (1974), Kalai, Postlewaite and Roberts (1978), Allen (1982); more
recently, Bell (1997), Kranton and Minehart (1997)). Networks also naturally come up in
models of organizational hierarchies (for example Radner (1992) and Van Zandt (1997)).
But social structure still is not a prominent concern of game theory or economic theory
generally. Supported by entire scholarly traditions in sociology, the consideration of social
structure offers greater contextualization and richness in understanding communication
and coordination specifically and social phenomena more generally.

APPENDIX
Lemma 1. An equilibrium of T(—, ) exists.

Proof. This follows directly from the Knaster-Tarski fixed point theorem (Davey and Priestley (1990)):
an order-preserving function on a lattice has a fixed point. We set up the lattice structure and show that the
best response function is order-preserving; a fixed point of the best response function is an equilibrium.

Define the binary relation < on the set of strategy profiles F: we say f<g if £,(8) = r = g,(8) = r for all i€
N and all 0€©. It is easy to see that < is transitive (eSf, f<g = ¢<g) and antireflexive (fg.85f=>f=g).

Given ECF, we define (\/;cgf):®—{r,s} as Vseef)i(@)=r if 3feE such that f£;(8)=r and
(Vre£f)i(8) =5 otherwise. It is easy to show that (\/s.zf); is measurable with respect to .#; and therefore
\yeefeF.

Given fe F, define BR,(f)(6) as person i’s best response in state 6: we say BR,(f}(6)=r if ,=w and
Zoe rioy T(ONui(W, 1, fanin (9)) — u:(w, 8, fon(3(9))) 20 and BR,(f)(0) = 5 otherwise. It is easy to show that BR:(f)
is measurable with respect to .//; and hence BR(f)e F.

Show that BR: F—F is order-preserving, that is, fSg = BR(f)<BR(g). Say f<g. Say BR,(f)0)=r and
BR;(g)(6) =r. Since BR(f)(8)=r, we know that 6,= w and Ty pe) TS} t:(w, S (0)) — w:(w, 5, S (9))20.
Since /=g and utilities are supermodular, we know that X, p,s) T(9)(u:(w, r, gmin(@) —u;(w, s, gwyn(9))) 20 and
hence BR.(g)(6) =r.

Let E={feF: fSBR(f)}. Let b=\/r.pfeF. It is easy to see that f<b for all fe E. Since BR is order-
preserving, we know BR(f)<BR(b) for all feE. It is easy to see that therefore Ve e BR(f)<BR(b). Since
JEBR(f) for all feE, it is also easy to see that \/,crf<\//ecBR(f). Since < is transitive, we have Vyeefs
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BR(b). But \/segf=b. and thus b<BR(H). Since b<BR(b) and BR is order-preserving, we have
BR(b) = BR(BR(b)). Hence BR(b)e E and thus BR(b)<b. Since BR(b)<b and b=BR(b), and = is antireflexive,
we have b = BR(b). Hence b is an equilibrium.

For later reference, we show that b is “increasing”, that is, 8’<8 = {ie N: b(0")=ric{ie N:b(0) =r},
where 6'<6 means that 8;=w = 6,=w. In other words, the more willing people, the more revolt. Define
¢;: ®@—{r, s} as c;(0) = r if there exists 8”<0 such that 5,(8’) = r and ¢,(8) = s otherwise. It is also easy to show
that ¢, is measurable with respect to ., and hence ce F. It is easy to see that ¢ is increasing, b=c, and ¢;(8) =
r=0,=w.

Show ¢ <BR(c¢). Let ¢;(8) = r. Hence 6, = w and there exists 8”<8 such that 5,(8") = r. It suffices to show
that Zy. p,0) Q) 1t:(W, 1, e 1 (9)) — (W, 8, e (9))) 20 for all ge P;(0). Let e Pi(0). Hence ¢ = (054, dnviar)
<(O%w, dxpw) € Pi(0). Since b(0)=r and b = BR(b), we know Zpe pi6)
()t (W, 1, ban 1Oy Ovvao ) — W, S, by (05, Oanay))) 2 0. Since b=c¢ and utilities are supermodular, we
know Zye pcoy R(O) AW, r, ez (056, Onise ) — (W, 8, e 3(0%5¢), daap))) 20. Since ¢ is increasing and utilities
are supermodular, we know 2. p,e) T(Q) (i (W, 7, can iy (9)) — u:(W, 8, Can gy (9))) 2 0.

Since ¢ <BR(c), we have ce E and hence ¢<b. But b=c¢ and therefore » = c. Thus & is increasing. ||

Lemma 2. Let F={feF. f(6)=r if and only if 0;,=w and u;,(w, r, faon () Z1;(W, 3, for (53 (@) for all pe
PA(6)}. Then — is a sufficient network if and only if there exists fe F such that fi(w,...,w)=r for all ieN.

Proof. (=) Let =(8)=p(0;) - -p(6,), where p(w)=€ and p(x)=1-¢. Let z=max{w(w,r,am)
—u(w,s,any):a€A,ie N}y and let y=max{u;(w,r, apmy) — (W, s, anvi ) (W, r, @) — (W, s, anvesy ) <0,
ae A, ie N} (if u;(w, r, apuy) —u:(w, s, anyyy ) is never negative, then everyone has a weakly dominant strategy of
revolting when willing, and the lemma holds trivially). Since y<0, we can pick £>0 such that
(1-&)"y+(1—-(1-€&)")z<0.

Since — is sufficient, we know that there exists an equilibrium f of I'(—, ) such that f;(w, ..., w) =r for all
ie N. By the proof of Lemma 1, there exists an increasing equilibrium & such that f<b and hence b;(w, ..., w)=r
for all ie N. It suffices to show that be F. We need to show that if 5,(8) = r, then 8, = w and w;(w, r, by, (§)) 2
u:(w, 8, by (9)) for all ge P,(8) (the converse is obvious). Say that b,(8) =r. Obviously 6, =w. Say that there
exists some @ =(0gy, Omawn)EP(0) such that w;(w,r, by (@) <u:(W,s, byyn(9)). Then if we let
¢* = (053, Xmn) € Pi(8), since ¢*<¢ (fewer people are willing in ¢* than in ¢), b is increasing, and utilities are
supermodular, we have u,(w, r, by, (%)) — t:(W, 5, ban 15 (9%)) <0. We know e pee) (@) = £°(1 — £)*, where
k.=#{jeB(i): 8,=w} and k, = #{je B(i): 0, = x}. We also know that m(¢*) = £*(1 —€)" *. Hence

S e peoy FOr, b 9 (9)) = uils, by (PSP )y + (€5(1 - £) ~ (9 *))z
= (1 —e) (1 -y Py + (1~ (1 —)" ")),

which from our choice of € is negative. This contradicts the fact that b is an equilibrium of I'(—, ) and 4,(8) =
r.

(<) Let me A© and let fe F, where f(w, ..., w)=r for all ie N. Show that f<BR(f), where < and BR are
defined in the proof of Lemma 1. Say that f,(6) =r. Then 6, =w and uw, r, fx 1 (9)) Zu;(w, 5, fan(9)) for all
¢ Pi(0). Hence 3, _ 5 o, T (W, 7. [ () —16:(W, 5, f14($))) 20 and thus BR;(/)(8) = r. Thus f<SBR(f). As
in the proof of Lemma 1, therefore there exists an equilibrium b such that f<b. Since f;(w,...,w)=r for all ie
N, we know that b;(w,...,w)=rfor all ieN. ||

Lemma 3. If -»c—’ and — is a sufficient network, then — ' is a sufficient network.

Proof. Say that Cc N is “big enough” for ie N if a willing /i wants to revolt as long as everyone in C
revolts, that is, u;(w, r, ay iy ) 2u;(W, 8, apy ), where a = (rc, smc). Obviously since utilities are supermodular, if
C is big enough for i, then D> C is big enough for i. Also, saying fe F is equivalent to saying f;(8) = r if and
only if 8; = w and {je N: f;(¢) = r} is big enough for 7 for all ¢ P,(6).

Say F’ is the set of strategy profiles given —’. Similarly, say B'(i) is the ball given —” and ../} is person
i’s partition given —’. Since - -, we have B(/)c B’(i) and thusP,(6)> P;(0) for all 8 ©; the partition .7, is
“coarser” than the partition . 7;. Hence if f; is measurable with respect to .7, it is also measurable with respect

to .7 ;. Hence FCF’.

Define BR: F—F as BR,(f)(0) =r if 6,=w and {je N: f;(¢) =r} is big enough for i for all ¢ P,(8) and
BR;(f)(6) = s otherwise. Similarly, define BR" f'—f" as BRI (f}(0)=r if 6;=w and {jeN: fi(¢)=r} is big
enough for i for all ¢ Pi(8) and BR(f)(8) =s otherwise. Obviously f’e F’ if and only if /" = BR(f"). Let <
be defined on F and F” as in the proof of Lemma 1.
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Show that for all fe F, BR(f)<BR’(f). Say BR.(/)(6) = r. Hence we have 6,=w and {je N:fi(¢)=r}is
big enough for i for all ¢ P,(8). But P,(8)> P}(8); hence {je N: f;(¢) =r} is big enough for i for all ¢ P/(9)
and thus BR;(f)}(6) =r.

By Lemma 2, since — is sufficient, there exists o< F such that b;(w, - - -, w) = r for all ie N. By the definition
of BR we have b= BR(b). From what we showed above, we know that BR(b)<BR’ and thus b<BR’(b). As in
the proof of Lemma 1, let E'= {fe F": f<BR’(f)} and b’ =\/.x-f; we know that & = BR'(b") and hence b'c
F’. Since b2BR'(b), we know beE’ and hence b<H. Since bi(w,..., w)=r for all ieN, we have
bi(w,...,w)=r for all ie N. Hence —’is sufficient by Lemma 2. ||

Proposition.  Say — is @ minimal sufficient network. Then there exist cligues My, Ms, ..., M, which cover
N and a binary relation — defined over M\, M, ..., M, such that (1) i—j if and only if there exists some M,
which contains i and M, which contains j such that M,— M, and Q) if M, _,—>M,, then there exists a totally
ordered set M;,, M,,, ..., M, |, M, where M,, is maximal.

Proof. By Lemma 2, there exists fe F such that f;(w,...,w)=r for all ie N. Let BR: F—F be defined as
in the proof of Lemma 3. As in the proof of Lemma 1, let b =\//. zf, where E= { fe F: S=BR(f)}. We know
b= BR(b) and hence be F. Since fe F, we know fe E and hence f<b. Thus b;(w,...,w)=r for all ieN. As in
the proof of Lemma 1, it is easy to show that b is increasing.

Let W={(C,i):ieCcN and C= {je N:b;(6) =r} for some Hc©}. Let X = {(C,i)e W-A(D, i)e W such
that Dc C, D#C}. In other words, if (C, i)e X, then C is a minimal set such that ie C and C is the set of people
who revolt in some state of the world. We have the foltowing facts. Fact 1: For all ie N, there exists (C,i)eX.
This is true because b;(w,...,w)=r for all ie N and hence (N, i/)e W for all ie N. Fact 2: If (C,i)e X and je C,
then 3(D, j)e X such that Dc C. This is true because if (C, i)e X and je C, then (C,j)e W. Fact 3. If (C, e X,
then C is big enough for i. This is true because (C, i)e X< W means that there exists 8¢ © such that C= {je
N:b;(6) =r}. Since ie C, we have b;(9) = r; since be F and 0< P,(0), we know that C must be big enough for i.
Fact 4: If (C,i)e X and je C, then j—i. Since (C, i)€ X, there exists 0 © such that C= {je N: b;(8) =r}. Let
D ={jeN:b;(8py, xnus@n) = r}. By measurability of b,, we know that ie D. Hence (D, i)e W. Since unwilling
people never revolt, we know D B(i). Since & is increasing, we know that D C. Since (C,i)e X, we must have
C=D and hence Cc B(i); in other words, if je C, then j—i.

Define —* on N: say j—*iif 3(C, /)€ X such that je C. Show that — * is a sufficient network. Let B*(i) =
{je N:j—>*i} and define P¥(8) and ./} accordingly. Define f*: © = {r, s}: say f¥(8) = r if 3(C, i)e X such that
0c=(w,...,w)and say f}(6) = s otherwise. Whenever (C, /)e X we have Cc B*(i) by our definition of —*, and
hence f¥ is measurable with respect to .7 ¥,

Define BR*: F* > F* as BR¥(f)(8) =r if ;= w and {je N:£;(¢) = r} is big enough for all ¢e P¥(6) and
BR¥(f)(0) = s otherwise. Show that f* <BR*(f*). Say f¥(8) = r. Hence 3(C, i)e X such that 8, = w,...,w).
Since 8;=w, and since C is big enough for i by Fact 3, it suffices to show that for all ¢ P¥(0), /¥ (¢)=r for
all je C. Let e P¥(6). Since Cc B*(i) and 8¢ = (w,...,w), we have ¢c=(w,...,w). Let je C. By Fact 2 there
exists (D, j)e X such that DcC, and hence ¢p = (w, ..., w). Hence f¥(¢) =r by our definition of f* above.

As in the proof of Lemma 1, therefore there exists f**e F* such that f* <f**. Since f*(w, ..., w) =r for
all ie N by Fact 1 and the definition of /*, we have f¥*(w, ..., w) = r for all ie N, and therefore —* is a sufficient
network by Lemma 2. By Fact 4 and the definition of —*, we have —*——>. Since — is a minimal sufficient
network, we have —* = —_ In other words, we have Fact 5: for all i,jeN, j—iif and only if I(C, i)e X such
that je C.

Define the binary relation > on X as follows: (C,i)>(D, j) if CcD and i—j. If (C,i)e X, since ie C we
have i—; hence > is reflexive. To show that > is transitive, let (C, i) > (D, j) and (D, j) > (E, k). Since CcD
and DcE, we know that Cc E. Hence i€ E and since (E, k)e X, we know that i —»k by Fact S. So (C, i)>(E, k).

Now define the relation < > on X as (C, i) < >(D,j) if (C, i) > (D, j) and (D, j)>(C,i). Since > is reflex-
ive and transitive, so is < >, and obviously < > is symmetric. Hence < > is an equivalence relation, and thus
partitions X into equivalence classes Xi, X>,..., X,; that is, (C,i) < > (D, j) if and only if (C, i), (D, j)e Xx.

Define X, > X, if (C,i)>(D, ) for all (C,i)e X, and (D, j)e X,. Since > is transitive, it is easy to show
that if (C, i)e X, (D, j)€ X, and (C, i)> (D, j), then X, > X,. It is easy to show that > as defined over equival-
ence classes is transitive and acyclic.

Now define u(X;) = {ie N:3Cc N such that (C, e X, }. Let {M,,..., M.} = {uX), p(Xa), . .., u(X,)}.
Because there exists (C, )€ X for all ie N by Fact 1, we know that M,,..., M, cover N. Let i, je M. There
exists X, such that M, = u(X,-). Hence there exists (C, i), (D, j)e X,-; thus (C,i)>(D, j), and hence i—j. So
each M, is a clique. Finally, define M, —M, if there exists X,-, X, such that M= (X)), M, = p(Xy), and
X > Xp.

To show (1), first say i —;. Hence by Fact 5 there must exist (D, j)e X such that ie D, By Fact 2, 3(C, i)e
X such that Cc D. Hence (C, i) > (D, j). Say (C, i)e Xi- and (D, j)e X,-. Hence X,- > X and thus M, —M,, where
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M, = u(X,-) and M,= u(X,), and obviously ie M, and je M,. To show the other direction, let M, —>M,. We
thus have X,-, X,» such that M, = u(Xy), M, = u(X,), and X,-> X,-. If ie M, and je M,, there exists (C, )€ Xy
and (D, j)e X,, and since X;- > X,-, we have (C, i) > (D, j) and so i—/.

To show (2), say we have M,  —M, . Hence there exist X; ,, X, such that M, = u(; ), M, = pu(Xy),
and X; > X;. Since > over equivalence classes is transitive and acyclic, there exists a totally ordered set
Xi,..., Xy, Xy, where X;; is maximal. Hence u(Xy),. .., u(X; ), p(Xy) is totally ordered by — and p(Xy) is
maximal with respect to —. ||
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