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In a first auction in wich buyers can bid only multiples of an increment and have uniformly distributed values, the expected
price is less than the continuous bid expected price.

[ discuss the first price auction, within the independent private values model [Milgrom and Weber
(1982)], in which the seller auctions an object to N buyers. Each buyer’s value of the object is
distributed independently over [v, ] with cumulative distribution function F(v). Each buyer,
knowing only her own value of the object, chooses a b, from the set {by, b,,..., b,,} (I assume that
by =v and b, <) and the highest bidder receives the good at a price equal to his bid. If two or
more buyers bid the same highest b,, one of them, chosen randomly and fairly, receives the good at a
price equal to b;. When buyer values are uniformly distributed and bid possibilities are multiples of
an increment, I show that a symmetric Nash equilibrium exists uniquely and converges to the
equilibrium of the continuous bid auction as the bid increment goes to zero; however, the resulting
discrete bid expected price is always less than the continuous bid expected price, and thus the seller
has an incentive to make bid increments small.

A buyer’s strategy is a function from [v, 0] to {b,, b,,..., b,,} returning the buyer’s optimal b;,
given her value of the object v. Strategies we consider are of the (sufficiently general) form:

b, if vels_y,s), l<i<r,

.

s

if v=s,,

where v=s5,<5,<s,< -+ <s5,=0, and r is an integer such that 1 <r < M. Let’s calculate the
expected gain, EG(v, b,), for a buyer whose value is v and bids b;, when every other buyer employs
the strategy b(v). If r+1<i<M, EG(v, b;)=v—b,. Otherwise, EG(v, b)=XN.,1/t)v—
b,) Pr(b; is the highest bid and ¢ buyers bid b,), and so

N

EG(v, b) = T (1/0)(v=b)( ¥ T [F(s) = F(sim)) ' [F(s,)] "

= [(o=0)/N(F(s) = Fsi- ] T () FCs) = Flsi-)) [FGs-)]

N N
=[(U_bi)/N][(F(si)) _(F(si—l)) ]/[F(Si)_F(Si~1)]-
* The ideas of this paper arose in a class taught by Charles Plott. I am grateful for comments from Steve Matthews.
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If we let 4, =[1/NJ(F(s)" = (F(s,_1))"1/[F(s;) = F(s,_,)], then EG(v, b)=(v—-1b)A..

The following four conditions might not be independent, but it is fairly straightforward to prove
that b(v) is a symmetric (pure strategy) Nash equilibrium strategy if and only if s,, s,,..., s, satisfy
them. The first condition is that when a buyer’s value falls exactly on a s;, she obtains the same
expected gain from bidding b, and b, . So EG(s;, b;) = EG(s;, b;,,), or
Condition 1. (s, —b)A,= (s,

We also need EG(D, b,) = EG(0, b,,), or
Condition 2. (0—b)A,=0—b,,;.

—b, DA, forl<i<r—1.

Let’s call our earlier assumption

Condition 3. v=3s,, V=3s,,and 5;_; <s; forl <i<r.

Finally, to ensure that bidders never bid above their value, we need
Condition 4. s;_;z b, forl1<i<r.

Let values be distributed uniformly: [v, v} = [0, 1] and F(v) = v. Most often, bid possibilities are
multiples of a small increment, like a dollar. So let b,= (i —1)/M. As M gets large, the increment
goes to zero and the ‘grid’ of bid possibilities gets finer.

Proposition 1. When [v, v]=[0, 1], F(v) =v, and b;= (i — 1) /M, unique r and unique s, s,,..., s,
exist which satisfy the four conditions. Also the following inequalities hold for 1 < i <r: (i) (s;,_, +5,)/2
> Nb,/(N —1); (ii) s; < Nb, /(N —1); and (iii) s,> Nb,/(N —1).

Proof. First we show that Condition 1 is equivalent to Condition 1 (uniform). For 1< <r,
(s;—b)A; = st/N. Say sg, S1,..., s, satisfy Condition 1 (and hence s,(A,— A4, ) =bA;,— b; 14,1
for1 <i<r—1). For j=1, Condition 1 (uniform) is satisfied trivially. For 2 <j <r, s}v /N=

j—1

J
(siN_S,-{x)/N= Y (5= 521)4,= =504, +s4;+ L osi(4i-4.)
i=1

J
= i=1

i=1

j—1
=50, + ¥ bA,— b A =54, +bA — b A= (s,~b))A,.
i=1

Now say that sy, sy,..., s, satisfy Condition 1 (uniform). Then for 1 <j<r—1,(1/N)(s}\,—s) =
$j+14,41 = bjs1d 4, — 5,4, + b;A ;. But from the definition of A, (1/N)(s}., —s)) = (5,1 — 5,)4,,1.
Thus (s, —b,)A,=(s;,— b, )4, 1.

Choose r such that b, =max{b;: b, <(N —1)/N}. Such an r exists, since b; =0<(N—1)/N.
Since b,,, =2 (N—-1)/N, EG(, b)=1/N=1-b,, ,=EG(1, b,,,), and so Condition 2 holds (it is
also easy to show that (ii) and (iii) are satisfied for i = r). To show that this is the only possible r,
first say b, > max{b;: b;<(N-1)/N}. So b,=(N—1)/N. We know that NA,=1/(1 —b,) from
Condition 1 (uniform) and that s,_; <s,=1 by Condition 3. But

N-1 N-1 _
N, =(1-sX,)/(0-5_)= Y s/< ¥ (1))=N.
Jj=0 j=0

So 1 < N(1-—b,), and hence b, < (N —1)/N, a contradiction. Next assume b, < max{b;: b, <(N —
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1)/N}. Then b,,; <(N—1)/N. But then, EG(1, b,,,)=1-b,,,>1/N=EG(1, b,), and Condi-
tion 2 is violated.

If r=1, the conditions and (i)-(éii) hold trivially, and we are done. So assume r > 2, and let
2 <i<r. We show that given a s; which satisfies (i) and (iii), a 5;,_; uniquely exists which satisfies
Condition 1 (uniform); this s;_; also satisfies Conditions 3 and 4 and (i)-(iii). To do this we use the
following lemma (the proof is not very interesting and is available upon request):

Lemma 1. Choose y such that 0 <y <1 and let N be an integer greater than 1. Then a unique x exists
in (0, 1) which solves (1 —x")/(1 — x)=N/(1 + (N —1)y), and: (1) x>1—-27; (2) x<1—v; and
(3) x>(N-1)QA-y)/N.

Let y=1~[N/(N —1)]b,/s;]. Since s, satisfies (iii), 0 <y <1, and so we can use Lemma 1 to
conclude that there uniquely exists a 0 < (s,_,/s;) <1 which solves [1 — (s,_;/s)"}/[1 — (5;_1 /)]
=N/1+(N-1vy)=1/[1-(b,/s,)], which is equivalent to Condition 1 (uniform). Since s,_; /s, <
1, Condition 3 holds. (1), (2), and (3) in Lemma 1 imply (), (ii), and Condition 4 respectively. From
), 5;_y> —s,+ 2Nb,/(N — 1). Since s, satisfies (ii), s, < Nb,,,/(N —1), and thus 5,_; > [N/(N —
DI(2b;— b;,.1) = Nb;_, /(N — 1), and thus (iii) holds. We finish by checking that s, = 0 satisfies the
conditions and (i). Q.E.D.

Let bidy j(v) be the symmetric Nash strategy defined by the s,’s and let Ep, ,, be the resulting
expected price. Vickrey (1961) showed that if buyers can make bids in the continuous interval [0, 1],
the symmetric Nash equilibrium strategy is bid(v)=(N —1)v/N and the expected price is (N —
1)/(N+1).

Corollary 1. As M — o, bidy ,,(v) converges uniformly to bid(v) = (N — 1)v/N.
Proof. Ifs;_y<v<s;, where2<i<r, bidy »,(v)=b,. From (iii), Nb,_,/(N — 1) <s,_,, and from
(i), s;<Nb1/(N—1). So b;_1 <(N—1Dv/N<b,. If s<v<s,, bidy ), (v)=b,, and b, <(N
~1)v/N < b, since so=>b, =0 and (ii). If v=s,, bidy p,(v)=b, and b,_, <(N-1)v/N<b,,,. So
forO<v<1, |(N—1v/N—-bidy ,(v)| <1/M->0as M— co. Q.E.D.
Corollary 2. Forall M>2 and N 22, (N —1)/(N +1)> Epy ,,.
Proof. Forl<ix<r,since s,>s5;_ 3, S[{(N—1)/(N+1D]—s,_;>s5,_4[(N—1)/(N+1)]—s,.
SiN[Si[(N_ 1)/(N+ 1)] “Si—l] >SiA11[si—l[(N_ /(N + 1)] - s,] .
[(N=-1)/(N+ 1)] [siN+1 - S:T;I] > s, — 5,50
[2N/(N+1)][sM*! - s > sy —ss s = s

[(N-1)/(N+1)] [siNH _Si}\i+11] > [(N-1)/N] [(si—l +si)/2] [siN_siAil] .

Since, from (i), (s;_; +5,)/2> Nb,/(N — 1), we can add up inequalities to get
r r
[(N-1D)/(N+D] X s =51 > T b [s) —sX].
i=1 i=1

So (N—1)/(N+1)>Epy,. QED.
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bid

value
Fig. 1.

Using a computer, we make the following estimates: Ep,, = 0.382, Ep,;=0.317, Ep,4=0.483,
Ep;9=10.476, and Ep,,, = 0.488, which compare with the continuous bid expected price of 0.500.
Note that Ep, ,, does not increase monotonically in M - making the set of bid possibilities finer
doesn’t necessarily increase expected revenue. In fig. 1, bid;,o(v) and bid(v) =2v/3 are graphed.

Our theory is not developed to the point of being directly applicable to experimental auctions (one
reason being that buyers in experimental situations tend to be risk averse — for a discussion of
discreteness see Cox, Smith and Walker (1986, pp. 15-16). On a more speculative level, we can see
how sellers have an incentive to establish small exchange units (money, perhaps). One conclusion at
least is that continuous models of discrete institutions can yield approximations which are good but
systematically biased.
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